US009166991B2

a2 United States Patent 10) Patent No.: US 9,166,991 B2
Trugman 45) Date of Patent: Oct. 20, 2015
(54) IDENTIFYING BUSINESS TRANSACTIONS (56) References Cited
FROM TRAFFIC IN AN ENTERPRISE
CONTENT MANAGEMENT SYSTEM U.S. PATENT DOCUMENTS
. 7,653,742 B1* 1/2010 Bhargavaetal. 709/240
(75) Inventor: Rodney M. Trugman, Alpharetta, GA 2006/0107255 Al* 52006 Chagoly et al. ... 717127
(US) 2007/0067794 Al* 3/2007 Russelletal. ..o 725/25
2007/0245137 Al* 10/2007 Bhagatetal. 713/153
(73) Assignee: RTIP, Inc., Alpharetta, GA (US) 2007/0271517 Al* 11/2007 Finkelman et al. 715/742
2009/0125532 Al* 52009 Wexleretal. 707/100
* e H H H H 2010/0161616 Al* 6/2010 Mitchell 707/741
(*) Notice: Subject. to any dlsclalmer,. the term of this 20100223471 AL* 9/2010 Fresko et sl 13176
patent is extended or adjusted under 35 2011/0126088 AL1* 52011 SUALt wevvevoveeeoreoirsiis 715/206
U.S.C. 154(b) by 178 days.
* cited by examiner
(21) Appl. No.: 13/456,649
Primary Examiner — Hamza Algibhah
(22) Filed: Apr. 26,2012 (74) Attorney, Agent, or Firm — Cantor Colburn LLP
(65) Prior Publication Data (57) ABSTRACT
US 2013/0290476 Al Oct. 31, 2013 Systems and methods are disclosed for identifying business
transactions from traffic in an enterprise content management
(51) Int. CL system. The system intercepts HI' TP messages that originate
GO6l’ 15/16 (2006.01) from or are destined for a server in an enterprise content
HO4L 29/06 (2006.01) management (ECM) system. The system also receives noti-
(52) US.CL fications related to lifecycle events in the ECM system. The
CPC .o, HO4L 63/1408 (2013.01) system then correlates information in the HTTP messages
(58) Field of Classification Search and the notifications to identify a corresponding business
CPC e HO4L 67/02 transaction performed by the ECM system.
USPC ittt 709/217

See application file for complete search history.

20 Claims, 7 Drawing Sheets

100

| _X HKXXHXX X KXXHAXX
X XKXXXK X KAXKK
ECM CLIENT e e
130 T T
™ EPM DEPLOYED
COMPONENTS 180
)
[
I
v
EPM CLIENT EXPERIENCE & PERFORMANCE
140 MANAGEMENT SYSTEM 120
L™ 3
EPM
DATA

ENTERPRISE CONTENT

MANAGEMENT SYSTEM 110 160

170

US 9,166,991 B2

Sheet 1 of 7

Oct. 20, 2015

U.S. Patent

01
vivda
Wd3

021 WALSAS LNIWIOVNVIN
JONVINHOS4d3d ® 3ON3IHd3dX3

l 'Ol

h

09—

y

081 SINIANOJINOCD
d3A01d3d Nd3

HXX XXX
HXAXX

YOO

HXXXX
XXX

0Ll WALSAS LNIWIOVNVIN
INILNOD ISIddd3 1N

0oL ——

orl
IN3ITO Nd3

01592
IN3IIMTO NO3T

US 9,166,991 B2

Sheet 2 of 7

Oct. 20, 2015

U.S. Patent

Obb—

-

¢ 9Old

g-0v¢ 43AIT03d INIAT

SvZ 4344INS dL1H

¥-0€c €-0€¢
‘ddVv ‘ddv

g-0l¢
H3IAH3IS NOILYOITddV

G¢e ada
INILINOD

Gle
d3AYES ISvavivd

0Tk

0¢ 43aAIF03d LN3AT

V-0¥¢ 43aNITOIY LNIAT

G¥¢ 4344INS d11H

St¢ 4344INS d11H

¢0ec l-0€¢
‘dd¥v ‘ddv

v-0lL¢
d3NAGES NOILYOI1ddY

XXX
HXUXX

o ord XXXXXX
401037100

G0¢ /

d3ALE3S AN3-LNOdJd 93M

GlC
H3IAL3S
ONILHOdT

04¢ d31dvav

—F———— e — —— —

09¢ 43AY3S
NOILOVSNVHL

——0¢¢

G9¢
a9d NdvY

U.S. Patent

235
\‘

330

Oct. 20, 2015 Sheet 3 of 7

A

l START)

/

US 9,166,991 B2

REGISTER FOR EV

ENT NOTIFICATION

/310

A

/

INSTALL HTTP

INTERCEPTOR

/320

h J

RECEIVE EVENT

350

v

CREATE TRANS. PKT
FROM EVENT DATA

h 4

340

RECEIVE HTTP

A 4

360

CREATE TRANS. PKT
FROM HTTP DATA

A

A

COMMUNICATE

TRANS. PKT TO

MONITOR SERVER

/370

END

FIG. 3

U.S. Patent Oct. 20, 2015 Sheet 4 of 7 US 9,166,991 B2

10
RECEIVE TRANS. PKT FROM COLLECTOR /4

' 2
CORRELATE TRANS. PKT AND /4

PREVIOUS TRANS PKT

NO END OF

TRANSACTION?

40
GENERATE TRANSACTION DESCRIPTION /4

A 4

50
STORE TRANSACTION DESCRIPTION /4
IN DATABASE

'

END

FIG. 4

U.S. Patent

260
\‘

Oct. 20, 2015 Sheet 5 of 7

(START)

h 4 510
FOR EACH
PENDING TRAN.

[y

530\

| ot

US 9,166,991 B2

SAME SESSION?

NO

YES

HANDLE DUPLICATE TRANS PKTS

540\

lNO DUP ALLOWED

HANDLE END URL

DUP

550\

l NO END DEFINED

HANDLE CANCEL URL

MORE TRANS.

h 4 560
NEXT
PENDING TRANS.

END

_NO MORE TRANS.
h 4
END

FIG. 5

U.S. Patent Oct. 20, 2015 Sheet 6 of 7 US 9,166,991 B2

260\‘ START
610
FOR EACH
‘ TRANS. DEFINITION

|‘
%

620
NO

MSG URL CONTAINS
DEFINED START URL

630
NO

MSG URL CONTAINS
ALL DEFINED ACTION URLS

640
NO

MSG URL CONTAINS
ALL DEFINED CLIENT URLS

650
— ADD TO PENDING TRANSACTIONS /
L >
660
NEXT /
‘ TRANS DEF. MORE TRANS.
NO MORE TRANS.

) 4

END

FIG. 6

US 9,166,991 B2

Sheet 7 of 7

Oct. 20, 2015

U.S. Patent

00L

L "'Old

042 0S. 0g.
30IA3A JOVAYILNI JOV4YILNI
3JOVHOLS ol MHYOMLIN

0./ SNg
6/Z Y344INS d.LLH
0LL 0/Z 43AIF03Y INIAT
¥0SS3I00Ud
G€Z YOL1031100
0Z2 AHOW3I

US 9,166,991 B2

1
IDENTIFYING BUSINESS TRANSACTIONS
FROM TRAFFIC IN AN ENTERPRISE
CONTENT MANAGEMENT SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

Not applicable.

TECHNICAL FIELD

The present disclosure generally relates to enterprise con-
tent management systems, and more specifically to identify-
ing business transactions from traffic in an enterprise content
management system

BACKGROUND

Today, enterprises such as businesses, governments, edu-
cational institutions, and various other organizations use vast
amounts of data to drive decision making in their organiza-
tion. Enterprises use many varieties of computerized infor-
mation systems and a large amount of networking infrastruc-
ture to manage and organize the structured, semi-structured,
and unstructured data used by the enterprise. As the number
of'systems and the amount of data continues to grow, keeping
these systems running at an acceptable level of availability
and performance becomes more of a challenge.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the disclosure can be better understood
with reference to the following drawings. The components in
the drawings are not necessarily to scale, emphasis instead
being placed upon clearly illustrating the principles of the
present disclosure.

FIG. 1 is a high-level block diagram of a networked envi-
ronment including an application performance monitoring
(APM) system, according to some embodiments disclosed
herein.

FIG. 2 is a block diagram of the APM system of FIG. 1,
according to some embodiments disclosed herein.

FIG. 3 is a flowchart describing operation of a portion of
the APM system of FIG. 1, according to some embodiments
disclosed herein.

FIG. 4 is a flowchart describing operation of another por-
tion of the APM system of FIG. 1, according to some embodi-
ments disclosed herein.

FIG. 5 is a flowchart describing operation of yet another
portion of the APM system of FIG. 1, according to some
embodiments disclosed herein.

FIG. 6 is a block diagram of a computing device which can
be used to implement the APM system of FIG. 1, according to
some embodiments disclosed herein.

FIG. 7 is a block diagram of a computing device on which
the various components of ECM system 110 and APM system
120 can execute.

Having summarized various aspects of the present disclo-
sure, reference will now be made in detail to the description of
the disclosure as illustrated in the drawings. While the dis-
closure will be described in connection with these drawings,
there is no intent to limit it to the embodiment or embodi-
ments disclosed herein. On the contrary, the intent is to cover
all alternatives, modifications, and equivalents included
within the spirit and scope of the disclosure as defined by the
appended claims.

10

15

30

40

45

50

55

2
DETAILED DESCRIPTION

FIG. 1 is a high-level block diagram of a networked envi-
ronment. The environment 100 includes an enterprise content
management (ECM) system 110, an application performance
monitoring (APM) system 120, one or more ECM clients
130, and one or more APM clients 140. These components
communicate with each other via a network 150 such as the
Internet. In implementations in which the network 150 cor-
responds to the Internet, the components of FIG. 1 may be
connected to the Internet using various technologies, such as
local area networks (LLANs), wide area networks (WANs),
wired networks, wireless networks, and combinations
thereof. However, such details are not shown. In other imple-
mentations, the network 150 corresponds to an intranet or
extranet rather than to the Internet.

Enterprise content management (ECM) system 110 pro-
vides various computing services associated with content 160
and/or documents that are related to the organizational pro-
cesses of an enterprise, such as capturing, managing, storing,
preserving, and/or delivering the content and documents to
various users. Users associated with the enterprise interact
with ECM system 110 through various ECM clients 130. For
example, a user may, through ECM client 130, view or check
out documents, collaborate and share documents with other
users. As another example, a user may interact with ECM
client 130 to run a workflow application which leads a user
through various forms necessary to complete a business task.
ECM system 110 may include components that are specific to
or customized for a particular enterprise. In some embodi-
ments, ECM system 110 is implemented with Microsoft
SharePoint®, but the techniques disclosed herein also apply
to other enterprise content management systems.

Application Performance Monitoring (APM) system 120
provides computing services that monitor the behavior and
health of software and hardware components of ECM system
110. In particular, as users associated with an enterprise inter-
act with business-related content through ECM system 110,
APM system 120 collects experience and performance data
170 that allows the enterprise to monitor the actual user
experience with ECM system 110 in terms of, for example,
response times, activity levels during particular time periods,
etc. As shown in FIG. 1, APM system 120 may include some
software components 180 that are deployed within ECM
system 110, while the remaining components may be separate
from ECM system 110.

The experience and performance data collected by APM
system 120 may be provided through various mechanisms,
and in various forms, to enterprise personnel such as manag-
ers, decision-makers, or system administrators. These users
interact with the APM system 120 through one or more APM
clients 140. For example, APM system 120 may generate and
provide to users a dashboard display of various metrics
related to the monitored ECM system 110. APM system 120
may allow users to generate reports related to the monitored
metrics, and to configure alerts and alarms which are trig-
gered when the metrics go out of range. As another example,
APM system 120 may allow a user to create tests that exercise
specific functionality of ECM system 110.

FIG. 2 is another block diagram illustrating selected com-
ponents of the environment 100 from FIG. 1. While FIG. 1
depicted the environment as a whole at a high level, FIG. 2
instead illustrates some of the components of ECM system
110 and APM system 120 in more detail.

In the example configuration shown in FIG. 2, ECM sys-
tem 110 includes one or more web front-end servers 205, one
or more application servers 210, and one or more database

US 9,166,991 B2

3

servers 215. Such a collection of servers may be referred to as
a “server farm.” A web front-end server 205 operates as a
Hyper Text Transport Protocol (HTTP) server, serving up
enterprise content 220 to various ECM clients 130 (shown in
FIG. 1). Content 220 may take the form of, for example, sites,
lists, or libraries. Although content 220 may be cached locally
by a web front-end server 205, a content database 225 on
database server 215 acts as a repository for the content 220.
An application server 210 hosts various services or granular
components of functionality which combine to provide the
overall functionality of the ECM system 110. In the example
configuration shown in FIG. 2, applications 230-1 and 230-2
are hosted by application server 210-A while applications
230-3 and 230-4 are hosted by application server 210-B.

A non-limiting list of services which may be hosted by an
application server 210 includes search indexing, application
discovery, and load balancing. Some service applications
may be part of the ECM platform itself (e.g., part of Microsoft
SharePoint®), while others may be provided by a third party
to extend the functionality of ECM system 110. The services
hosted by application server 210 may be implemented using
a variety of middleware frameworks, such as Sharepoint®
Service Application Framework, Windows Communication
Foundation (WCF), service-oriented architecture (SOAP),
representational state transfer (REST), remote procedure
calls (RPC), and combinations thereof.

As mentioned above in connection with FIG. 1, APM sys-
tem 120 includes components 180 that are deployed within
ECM system 110. As shown in FIG. 2, these deployed APM
components 180 include a collector 235, one or more event
receivers 240, and one or more HTTP sniffers 245. In the
embodiment shown in FIG. 2, an instance of HTTP sniffer
245 and an instance of event receiver 240 are deployed on all
web front-end servers 205 and application servers 210, while
a single collector 235 is deployed on one of web front-end
servers 205 or application servers 210.

Collector 235 receives messages from HTTP sniffer(s)
245, and event receiver(s) 240. These messages are generated
as users interact with ECM system 110 to perform various
business-level transactions, for example, completing a spe-
cific workflow (e.g., Order Widget) or checking out a particu-
lar file (e.g., Check Out Prospectus). When associated with
time and quantity information, these enterprise transactions
measure the actual experience of users interacting with ECM
system 110. A non-limiting list of experience metrics
includes average time to check out a particular document and
number of orders completed using a particular workflow dur-
ing a one-hour period.

Collector 235 examines the incoming sniffer messages and
event receiver messages and create one or more transaction
packets which encapsulate at least a portion of the data from
the sniffer-provided HTTP messages and the ECM-provided
events. Data encapsulated by collector 235 in a transaction
packet may include, for example, a transaction packet type, an
IP address and/or port from the sender (client) or receiver
(server), a user name, a session identifier, an instance identi-
fier, a timestamp, a uniform resource indicator (URI), a con-
tent size, an object type, an ECM site name, an ECM list title,
an ECM object type, and an ECM item name. Collector 235
may map user name to client IP address and vice versa. After
creating a transaction packet, collector 235 communicates the
transaction packet to the APM system 120. In particular,
collector 235 sends the packets to a transaction server 260.

The process of extracting business-level transactions from
the stream of transaction packets provided by the collector
235 will be described at a high level here, then explained in
further detail below. In brief; transaction server 260 processes

10

15

20

25

30

35

40

45

50

55

60

65

4

the transaction packets according to a transaction schema 255
which contains definitions of the supported transactions. For
example, the schema may indicate that a Check Out transac-
tion includes the following sequence: an event indicating
creation of a check out object; an HTTP GET message with a
first specified URI; an HTTP PUT message with a second
specified URI; and an event indicating deletion of a check out
object. The schema may be implemented, for example, using
eXtensible Markup Language (XML).

A non-limiting list of business-level transaction types
includes: document; folder; list; search; and workflow. A
non-limiting list of business-level transactions includes:

Add Document

CheckOut Document

CheckIn Document

Cancel CheckOut

View Document

Delete Document

Add List

Delete List

Add Folder

Delete Folder

Search

Workflow Started

Workflow Completed

Workflow Postponed

Once the transaction server 260 has identified a particular
business transaction by correlating the series of transaction
messages received from collector 235, transaction server 260
writes the transactions to an APM database 265. In some
embodiments, an adapter module 270 may translate the trans-
action data from one format to another. For example, the
transaction packets generated by collector 235 and received
by transaction server 260 may be expressed in XML while
APM database 265 uses a binary record format. In such cases,
adapter module 270 may create a database record appropriate
for APM database 265, and then populate the record from the
XML data in the received transaction packet.

Once business-level transactions are stored in APM data-
base 265, other components of APM system 120 may utilize
the transaction data in various ways. For example, a reporting
sever 275 may communicate this data to enterprise users such
as managers and decision-makers by generating various
reports. Reporting sever 275 may also check various metrics
associated with the transactions and determine whether a
transaction metric has exceeded or has dropped below a ser-
vice level threshold (e.g., 25% of View Document transac-
tions have exceeded a threshold). Reporting sever 275 may
also proactively take remedial action when a service level
violation is detected.

Having discussed the overall process of identifying busi-
ness-level transactions in the ECM system 110 from a com-
bination of HTTP traffic and ECM object events, HTTP
sniffer 245 and event receiver 240 will now be discussed in
more detail. An event receiver 240 receives notifications
related to the lifecycle of various objects in ECM system 110.
A non-limiting list of lifecycle events includes add, delete,
move, update, check in, check out, cancel check out, and
convert. A non-limiting list of ECM objects includes sites,
lists, list items, documents, folders, searches, and workflows.
A given event receiver 240 may handle notifications for more
than one type of ECM object.

As noted above, each event receiver 240 is deployed on a
particular server 205 or 210. An event receiver 240 registers to
receive notifications for those objects that are managed by
applications hosted on that server 205 or 210. For example,

US 9,166,991 B2

5

event receiver 240-A is hosted on server 210-A and therefore
handles notifications for objects managed by applications
230-1 and 230-2.

An HTTP sniffer 245 intercepts or sniffs HTTP traffic
originating at, or destined for, its corresponding server 205 or
210. As a web server, web front-end server 205 receives
requests for web pages and provides a web page in response.
Thus, an HTTP sniffer 245 deployed on a web front-end
server 205 will generally see corresponding HTTP messages
such as GET, PUT, POST, etc. In addition, middleware pro-
tocols such as SOA protocol (SOAP) and REST build on
HTTP, so an HTTP snitfer 245 deployed on a web front-end
server 205 may also see HTTP messages that correspond to
SOAP and REST traffic. Similarly, an HTTP sniffer 245
deployed on an application server 210 will see HTTP mes-
sages for SOAP and REST traffic associated with applica-
tions 230 hosted on that application server 210.

FIG. 3 is a flowchart describing operation of a portion of
deployed APM components 180. The process begins at block
310, where event receivers 240 (FIG. 2) register with ECM
system 110 (FIGS. 1 and 2) to receive notifications for ECM
object lifecycle events. In configurations involving multiple
event receivers 240, each event receiver 240 may register
separately. Next, at block 320, the HTTP sniffers 245 (FIG. 2)
are installed and each begins intercepting HT TP traffic on the
server 205 or 210 on which the sniffer is installed.

As event notifications and HT TP messages are received by
event receiver 240 and HTTP sniffer 245 respectively, these
events and messages are communicated to collector 235 at
block 330 and block 340, respectively. In some embodiments,
communication between event receiver 240/HTTP sniffer
245 and collector 235 is implemented with a queuing service,
such as Microsoft Messaging Queuing Service. Event
receiver 240/HTTP sniffer 245 may preprocess the event/
message before communicating the data to collector 235. By
doing so, only a subset of information in the event/message is
passed on to collector 235. The preprocessing may also add
information that is not in the actual object lifecycle event or
HTTP message, for example, information identifying event
receiver 240 or HT'TP sniffer 245.

Processing then continues at block 350 or block 360,
depending on whether an event or HTTP message was
received. In either case, collector 235 creates a transaction
packet using data from the event or message. Finally, at block

10

15

20

25

30

35

40

6

370, collector 235 sends the transaction packet to the trans-
action server 260, and the process of FIG. 3 is complete.

FIG. 4 is a flowchart describing operation of a portion of
transaction server 260. The process begins at block 410,
where transaction server 260 receives a transaction packet
from collector 235. At block 420, transaction server 260
attempts to correlate the received transaction packet with one
or more previously received transaction packets. For
example, transaction packets having similar timestamps may
be considered to be part of the same business transaction. As
another example, transaction packets having the same appli-
cation identifier may be treated as belonging to the same
business transaction. In some embodiments, multiple corre-
lations are required before a sequence of events and HTTP
messages are treated as belonging to the same business trans-
action. The correlation process will be described in more
detail in FIGS. 5 and 6.

Next, at block 430, transaction server 260 determines
whether the transaction packet received at block 410 marks
the end of a business-level transaction. If No, then processing
continues at block 410, where transaction server 260 awaits
another transaction packet. If Yes, then at block 440, transac-
tion server 260 generates a description of the transaction,
including specifics from the transaction packet (e.g., file or
folder name, timestamps, user name). In some embodiments,
the description may be expressed in XML. Next, at block 450,
transaction server 260 stores the transaction in APM database
265. Some embodiments of APM system 120 may translate
the description from one format to another, for example from
XML to a binary record format as used by a relational data-
base. Though not expressly shown in the flowchart, the pro-
cess of FIG. 3 eventually terminates, either through a graceful
exit or an abnormal condition such an exception, but other-
wise continues to process events and messages indefinitely.

As mentioned above, blocks 420 and 430 in FIG. 4 process
the current transaction packet in the context of a series of
previously received transaction packets in order to identify a
single business level transaction defined in schema 255. This
process will now be described in more detail in connection
with FIGS. 5 and 6. Before describing those details, an
example of a transaction definition will now provided in order
to provide context for the discussion of FIGS. 5 and 6. Insome
embodiments, a transaction definition includes the following
fields:

name
index
timeout
startsession

endsession
command
<start_ URT>*
<end_ URL>*
<cancel_URL>*
<ignore_ URL>*

<URL__action>*
<action>*

<not__action>*
<end__action>*

<cancel__action>*

<newtrans_ URL name="“Transaction Name
index="19">URL</newtrans_ URL>

<sessionid>
<userid>

The name of the transaction
The unique index of the transaction starting at 1.
how long to wait for the end of the transaction.
boolean indicating beginning of a session. All transactions ignored
until start transaction found.
Set to true to clear all session/lookup variables for the sessionId.
Special actions for non-real transaction (id=0) such as Copy Session.
The first URL of the transaction.
The last URL of the transaction.
Cancel current transaction if this URL found.
When in middle of transaction ignore this URL for new
transaction.
The action to check for only in the URL (client content).
The action to check for in the post data and all client content (client
content).
This action should not be in the post data (client content).
The action to check for in the post data with the end_ URL(client
content).
The action to check for in the post data with the
cancel_ URL(client content).
? Change current transaction to a new transaction
The variable for the session id.
The variable for the user id.

US 9,166,991 B2

7

FIG. 5 is a flowchart describing operation of a portion of
transaction server 260. More specifically, FIG. 5 describes in
more detail the operation of a portion of blocks 420 and 430
in FIG. 4, which processes a current transaction packet in the
context of a series of previously received transaction packets
in order to identify a single business level transaction defined
in schema 255. On entry to block 510, atransaction packet has
already been received (block 410 in FIG. 4). At block 510,
transaction server 260 begins a loop which iterates through an
existing list of pending (already received) transaction pack-
ets. At block 520, transaction server 260 determines whether
the current transaction packet in the pending list represents
the same session as the received transaction packet (from
block 410). In some embodiments, this determination is made
by examining a session identifier stored in the transaction
packets. If the received transaction packet does not represent
the same session, processing continues at block 560, which
iterates to the next pending transaction. If the received trans-
action packet does represent the same session, transaction
server 260 updates one or more transaction byte counts.

Next, at block 520, transaction server 260 checks for the
existence of duplicate packets in the transaction, and handles
a duplicate if found. To do so, transaction server 260 exam-
ines the definition of the current pending transaction to deter-
mine if duplicate packets are allowed and the definition does
not include an end URL. If either condition is false, then
processing continues at block 540 (discussed below). If both
conditions are true, transaction server 260 then compares the
StartURL in the definition with the URL of the currently
received transaction packet. If the URLs match, then the
currently received transaction packet is a duplicate, which is
saved for later completion, and the process is complete. If the
URLSs do not match, then the currently received packet is not
a duplicate, and the current pending transaction is completed
and processing continues at block 560, with the iteration of
the next pending transaction.

Next, at block 530, transaction server 260 checks for the
end of the current transaction and handles the end if found. To
do so, transaction server retrieves the EndURL in the defini-
tion of the current pending transaction and compares this with
the URL of the currently received transaction packet. If no
match is found, processing continues at block 560, with the
iteration of the next pending transaction. If the URLs do
match, the currently received transaction packet marks the
end of a business-level transaction and transaction server 260
handles this by checking the definition for any required End-
ing Post Data actions. If no Ending actions are required, then
transaction server 260 completes the pending transaction and
the process is complete. However, if the definition of the
current pending transaction does require one or more Ending
actions, the URL of the currently received transaction packet
is compared to the list of Ending actions in the definition. Ifall
required Ending actions are found in the URL, then transac-
tion server 260 completes the pending transaction and the
process is complete. If all required Ending actions are not
found in the URL, processing continues at block 540.

Transaction server 260 reaches block 540 if the current
pending transaction is not an end of the transaction or a
duplicate transaction. At block 540, checks for a cancelled
transaction and handles the cancelled transaction if found. To
do so, transaction server 260 retrieves the CancelURL in the
definition of the current pending transaction and compares
this with the URL of the currently received transaction
packet. If no match is found, processing continues at block
560, with the iteration of the next pending transaction. If the
URLSs do match, transaction server 260 checks the definition
for any required Cancel Post Data actions. If no Cancel Post

10

15

20

25

30

35

40

45

50

55

60

65

8

Data actions are required, then the process is complete. How-
ever, if the definition of the current pending transaction does
require one or more Cancel Post Data actions, the URL of'the
currently received transaction packet is compared to the list of
Cancel Post Data actions in the definition. If all required
Cancel actions are found in the URL, then transaction server
260 removes the pending transaction from the list and the
process is complete. If all required Ending actions are not
foundinthe URL, processing continues at block 560, with the
iteration of the next pending transaction.

When it is determined at block 560 that all transactions on
the pending transaction list have been processed, then the
process of FIG. 5 is complete.

FIG. 6 is a flowchart describing operation of a portion of
transaction server 260. More specifically, FIG. 6 describes in
more detail the operation of a portion of blocks 420 and 430
in FIG. 4, which processes a current transaction packet in the
context of a series of previously received transaction packets
in order to identify a single business level transaction defined
in schema 266. On entry to block 610, atransaction packet has
already been received (block 410 in FIG. 4) and has been
processed against the list of currently pending transactions.
Thus, on entry to block 610, transaction server 260 has deter-
mined that the currently received transaction packet is not
part of a pending transaction.

Transaction server 260 thus handles the packet as a new
transaction by attempting to match the transaction packet
with a transaction definition in schema 266. Therefore, at
block 610, transaction server 260 begins iterating through all
the defined transactions. A series of tests is applied at blocks
620, 630, and 640, and if the transaction packet passes all the
tests, then at block 660 the currently received transaction
packet is added to the list of currently pending transactions
and the process of FIG. 6 is complete The tests include:
comparing the URL of the transaction packet to the StartURL
in the definition (block 620); comparing the URL of the
transaction packet to all of the ActionURLs in the definition
(block 630); and comparing the URL of'the transaction packet
to all the ClientURLs in the definition (block 640). If any of
the tests fail, then processing continues at block 660, which
iterates to the next transaction definition. When all definitions
have been handled, the process of FIG. 6 is complete.

FIG. 7 is a block diagram of a computing device 400 on
which the various components of ECM system 110 and APM
system 120 can execute. Computing device 700 includes a
processor 710, memory 720, a network interface 730, a stor-
age device 740 (e.g., non-volatile memory or a disk drive),
and one or more input output (I/O) interfaces 750. These
hardware components are coupled via a bus 760. Omitted
from FIG. 7 are a number of components that are unnecessary
to explain the operation of ECM system 110 and APM system
120.

The various components of APM system 120 can be imple-
mented in software (i.e., instructions executing on a proces-
sor). FIG. 7 depicts a software implementation, with memory
720 used to store collector 235, event receiver 240, and HTTP
sniffer 245. Any or all of these components can also be imple-
mented in specialized hardware logic. Hardware implemen-
tations include (but are not limited to) a programmable logic
device (PLD), programmable gate array (PGA), field pro-
grammable gate array (FPGA), an application-specific inte-
grated circuit (ASIC), a system on chip (SoC), and a system in
package (SiP). These components may be implemented using
any combination of hardware and software, as should be
appreciated.

In some embodiments of APM system 120, one or more of
the software-implemented components are stored on a com-

US 9,166,991 B2

9

puter-readable medium, which in the context of this disclo-
sure refers to any structure which can contain, store, or
embody instructions executable by a processor. The computer
readable medium can be, for example, based on electronic,
magnetic, optical, electromagnetic, infrared, or semiconduc-
tor technology. Specific examples of a computer-readable
medium using electronic technology include (but are not
limited to) the following: a random access memory (RAM); a
read-only memory (ROM); and an erasable programmable
read-only memory (EPROM or Flash memory). A specific
example using magnetic technology includes (but is not lim-
ited to) a disk drive; and a portable computer diskette. Spe-
cific examples using optical technology include (but are not
limited to) a compact disk read-only memory (CD-ROM) or
a digital video disk read-only memory (DVD-ROM).

Any process descriptions or blocks in flowcharts would be
understood as representing modules, segments, or portions of
code which include one or more executable instructions for
implementing specific functions or steps in the process. As
would be understood by those of ordinary skill in the art of the
software development, alternate implementations are also
included within the scope of the disclosure. In these alternate
implementations, functions may be executed out of order
from that shown or discussed, including substantially concur-
rently or in reverse order, depending on the functionality
involved.

The above description has been presented for purposes of
illustration and description. It is not intended to be exhaustive
orto limit the disclosure to the precise forms disclosed. Obvi-
ous modifications or variations are possible in light of the
above teachings. The implementations discussed, however,
were chosen and described to illustrate the principles of the
disclosure and its practical application to thereby enable one
of ordinary skill in the art to utilize the disclosure in various
implementations and with various modifications as are suited
to the particular use contemplated. All such modifications and
variation are within the scope of the disclosure as determined
by the appended claims when interpreted in accordance with
the breadth to which they are fairly and legally entitled.

At least the following is claimed:

1. A method comprising:

intercepting HTTP messages, originating from or destined
for, a server in an enterprise content management (ECM)
system,

receiving ECM lifecycle events describing lifecycles of
objects managed by applications executing in the ECM
system,

generating a series of transaction packets that encapsulate
at least a portion of the intercepted HTTP messages and
at least a portion of the received ECM lifecycle events;

processing a current one in the series of transaction packets
in the context of previous ones in the series of transac-
tion packets, wherein the processing comprises correlat-
ing the HTTP messages and the ECM lifecycle events
within the series of transaction packets; and

identifying, based on the correlation, a corresponding
ECM business-level transaction, associated with a cat-
egory of document, folder, list, search, or workflow, that
is performed by the ECM system.

2. The method of claim 1, wherein the ECM system is

implemented using Microsoft Sharepoint®.

3. The method of claim 1, further comprising:

determining whether the correlated HTTP messages and
ECM lifecycle events match a transaction defined in a
transaction schema; and

25

40

45

55

10

if a matching transaction is found, identifying the corre-
sponding ECM business-level transaction based on the
matching transaction in the transaction schema.

4. The method of claim 1, wherein the correlating is based
on whether an identifier in one of the intercepted HTTP
messages matches a same identifier in one of the received
ECM lifecycle events.

5. The method of claim 1, wherein the correlating is based
on whether an identifier field in one of the intercepted HTTP
messages matches a different identifier field in one of the
received ECM lifecycle events.

6. The method of claim 1, further comprising:

registering with the ECM system for notification of the

ECM lifecycle events.

7. The method of claim 1, wherein the communicating
further comprises:

generating a message including information describing the

identified ECM business-level transaction; and

sending the message to the APM system.

8. The method of claim 1, wherein the information describ-
ing the identified ECM business-level transaction identifies a
user that performed the identified business transaction or
represents a duration of the business transaction.

9. The method of claim 7, wherein the information describ-
ing the ECM business-level transaction identifies enterprise
content of the ECM business-level transaction or identifies a
server in the ECM that executed the ECM business-level
transaction or identifies an application in the ECM that
executed the ECM business-level transaction.

10. The method of claim 1, wherein the processing further
comprises:

processing a current transaction in a pending transaction

list by comparing a URL field in the current transaction
withan End URL field in one of a plurality of transaction
definitions in a transaction schema; and

designating the one of the ECM business-level transaction

definitions as the identified ECM business-level trans-
action when the comparison finds a match on the URL
fields.

11. The method of claim 1, wherein the processing further
comprises:

upon determining that the current one in the series of trans-

action packets is not part of a pending transaction, look-
ing for a match with one of a plurality of ECM business-
level transaction definitions in a transaction schema.

12. The method of claim 1, wherein the ECM business-
level transaction corresponds to a task that is specific to an
organization.

13. The method of claim 1, wherein the ECM business-
level transaction corresponds to a sequence of actions per-
formed by users to complete a task is specific to an organiza-
tion.

14. A system comprising:

a memory having instructions stored thereon;

a processor configured by the instructions to:

intercept HTTP messages originating from, or destined
for, a server in an enterprise content management
(ECM) system;

receive ECM lifecycle events describing lifecycles of
document, folder, list, search, or workflow objects in
the ECM system;

generate a series of transaction packets that encapsulate
at least a portion of the intercepted HT TP messages
and at least a portion of the received ECM lifecycle
events; and

correlate the HTTP messages and the ECM lifecycle
events within the series of transaction packets to iden-

US 9,166,991 B2

11

tify a corresponding ECM business-level transaction
performed by the ECM system.
15. The system of claim 14, wherein the processor is fur-
ther configured by the instructions to:

while iterating through a pending transaction list, compare 3
a current one of the series of transaction packets with an
End URL field in a ECM business-level transaction defi-
nition, the ECM business-level transaction definition
being associated with a current pending transaction in
the pending transaction list; and;

designate the compared ECM business-level transaction as
the identified ECM business-level transaction when the
comparison finds a match between an End URL field of
the ECM business-level transaction definition and a
URL field in the current one of the series of transaction
packets.

16. A method comprising:

intercepting HTTP messages, originating from or destined
for, a server in an enterprise content management (ECM) 20
system,

receiving ECM lifecycle events describing lifecycles of
objects in the ECM system;

10

15

12

examining information in the HTTP messages and the
ECM lifecycle events to find a correlation between the
HTTP messages and the ECM lifecycle events; and

identifying a single ECM business-level transaction that is
performed by the ECM system based on the correlation.
17. The method of claim 16, wherein the ECM lifecycle
events further describe lifecycles of objects managed by
applications executing in the ECM system.
18. The method of claim 16, wherein the ECM business-
level transaction is associated with a category of document,
folder, list, search, or workflow.
19. The method of claim 16, wherein the ECM lifecycle
events further describe lifecycles of document, folder, list,
search, or workflow objects in the ECM system.
20. The method of claim 11, wherein the looking further
comprises:
comparing a URL in the current one of the series of trans-
action packets to multiple URL fields in the one of the
ECM business-level transaction definitions;

adding the current one of the series of transaction packets
to a pending transaction list when the comparison suc-
ceeds.

